Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 42(6): 1852-62, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25602425

RESUMO

Copper contamination affects biological, chemical, and physical soil properties and associated ecological functions. Changes in soil pore organization as a result of Cu contamination can dramatically affect flow and contaminant transport in polluted soils. This study assessed the influence of soil structure on the movement of water and Cu in a long-term polluted soil. Undisturbed soil cores collected along a Cu gradient (from about 20 to about 3800 mg Cu kg soil) were scanned using X-ray computed tomography (CT). Leaching experiments were performed to analyze tracer transport, colloid leaching, and dissolved organic carbon (DOC) and Cu losses. The 5% arrival time () and apparent dispersivity (λ) for tracer breakthrough were calculated by fitting the experimental data to a nonparametric, double-lognormal probability density function. Soil bulk density, which did not follow the Cu gradient, was the main driver of preferential flow, while macroporosity determined by X-ray CT (for pores >180 µm) proved the best predictor of solute transport. Higher preferential flow due to the presence of well-aligned pores and small cracks controlled water movement in compacted soil. Transport of Cu was rapid during the first flush (≈1 pore volume) in association with the movement of colloid particles, followed by slower transport in association with the movement of DOC in the soil solution. The relative amount of Cu released was strongly correlated with macroporosity as determined by X-ray CT, indicating the promising potential of this visualization technique for predicting contaminant transport through soil.

2.
Chemosphere ; 83(7): 1028-34, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21353286

RESUMO

The adsorption-desorption kinetics of Zn in the absence and presence of P was studied by using the stirred flow chamber technique. The results thus obtained were compared with those previously obtained for Cu. As with copper, the simultaneous addition of P and Zn in a 1:1 mole ratio to soil was found to significantly increased Zn adsorption relative to the absence of P. Unlike Cu, however, Zn was only adsorbed at fast adsorption sites in the absence of P. In any case, the increased adsorption of Zn in the presence of P was largely due to slow adsorption sites, where Zn(2+) ion acted as a bridging element between P and organic matter. Following adsorption in both the presence and absence of P, Zn was desorbed to a much higher extent than was Cu. However, the proportion of Zn desorbed after adsorption in the presence of P was significantly lower than in the absence of P. This indicates that Zn binds more strongly to adsorbing surfaces in the presence of P than in its absence.


Assuntos
Fósforo/química , Poluentes do Solo/química , Solo/química , Zinco/química , Adsorção , Cinética , Fósforo/análise , Poluentes do Solo/análise , Zinco/análise
3.
Pest Manag Sci ; 65(6): 615-23, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19165728

RESUMO

BACKGROUND: Flow shear stress induced by rainfall promotes the loss of the pesticides sprayed on crops. Some of the factors influencing the losses of colloidal-size particulate fungicides are quantified by using a rotating shear system model. With this device it was possible to analyse the flow shear influencing washoff of a commercial fungicide formulation based on a copper oxychloride-metalaxyl mixture that was sprayed on a polypropylene surface. A factor plan with four variables, i.e. water speed and volume (both variables determining flow boundary stress in the shear device), formulation dosage and drying temperature, was set up to monitor colloid detachment. RESULTS: This experimental design, together with sorption experiments of metalaxyl on copper oxychloride, and the study of the dynamics of metalaxyl and copper oxychloride washoff, made it possible to prove that metalaxyl washoff from a polypropylene surface is controlled by transport in solution, whereas that of copper oxychloride occurs by particle detachment and transport of particles. Average losses for metalaxyl and copper oxychloride were, respectively, 29 and 50% of the quantity applied at the usual recommended dosage for crops. CONCLUSION: The key factors affecting losses were flow shear and the applied dosage. Empirical models using these factors provided good estimates of the percentage of fungicide loss. From the factor analysis, the main mechanism for metalaxyl loss induced by a shallow water flow is solubilisation, whereas copper loss is controlled by erosion of copper oxychloride particles.


Assuntos
Alanina/análogos & derivados , Cobre/química , Fungicidas Industriais/química , Água/química , Adsorção , Alanina/química , Coloides/química , Cinética , Solubilidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...